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Composite right-/left-handed (CRLH) transmission lines have gained great interest in the microwave community. In practical
applications, such CRLH sections realized by series and shunt resonators have a finite length. Starting from the observation that
a high-order Chebyshev filter also exhibits a periodic central section of very similar structure, the relations between finite length
CRHL transmission lines and Chebyshev filters are discussed in this paper. It is shown that a finite length CRLH transmission
line in the balanced case is equivalent to the central part of a low-ripple high-order Chebyshev band-pass filter, and a dual-CRLH
transmission line in the balanced case is equivalent to a low-ripple high-order Chebyshev band-stop filter. The nonperiodic end
sections of a Chebyshev filter can be regarded as matching sections, thus leading to an even better amplitude and phase response. It
is also shown that, equally to a CRHL transmission line, a Chebyshev filter exhibits negative phase velocity in part of its passband.
As a consequence, an improved behavior of finite length CRLH transmission lines may be achieved adding matching sections based
on filter theory; this is demonstrated by a simulation example.

Copyright © 2009 C. Liu and W. Menzel. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. Introduction

In the past years, metamaterials [1] have found wide interest
in the microwave community. A homogeneous negative
refractive index, left-handed, or metamaterial transmission
line, however, does not exist in nature and typically is
approached by an artificial structure which is usually con-
structed from a series of discontinuous sections and operates
in a restricted frequency range [2, 3]. When the dimension
of such sections is much smaller than the wavelength
at the operating frequencies, such transmission lines are
considered as homogeneous media. A typical realization is
found in a quasilumped transmission line with elementary
cells consisting of series capacitors and shunt inductors
[4]. As the normal shunt capacitance and series inductance
cannot be avoided in practice, the concept of a composite
right/left-handed (CRLH) transmission line was developed,
and a number of applications have been demonstrated [4–
9], for example, for frequency-scanned antennas, directional
couplers, power dividers, zeroth-order resonators, and so

forth, and further applications of negative refractive index
transmission lines for constructing advanced microwave
components [10, 11] are envisaged.

Figure 1(a) shows the equivalent circuit of a (finite
length) CRLH transmission line (connected to a source
generator on the left side and a load at the right side).
Looking at this equivalent circuit, this CRLH transmission
line resembles a band-pass filter of typically high order. In the
following, we limit our discussions to such one-dimensional
CRLH transmission lines.

In a dual-CRLH transmission line, the series-branch and
the shunt-branch resonators of a CRLH transmission line
are interchanged resulting in a different type of negative
refractive index transmission line [12]. Figure 1(b) shows the
circuit model of such a dual-CRLH transmission line, which,
in this case, looks like a high-order band-stop filter.

A conventional filter, on the other hand, is generally not a
uniform structure. However, looking at the filter coefficients
gi of a Chebyshev filter, such a filter with high order exhibits
a highly periodic central section. From a different point of
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Figure 1: Equivalent circuit models of two finite length negative
refractive index transmission lines. (a) CRLH transmission line. (b)
Dual-CRLH transmission line.

view, it also can be considered as a periodic structure with
impedance matching sections at both ends (see Figure 3). In
[13] we have briefly shown that the CRLH transmission line
may be equivalent to a part of the Chebyshev band-pass filter,
which was done partly in an intuitive way.

The starting points of our considerations were on
the one hand, the periodic nature of the central part of
Chebyshev filters, and on the other hand, practical problems
of implementing finite length CRLH transmission lines into
a (typically) 50 Ohm environment. Therefore, we wanted
to find the relations between CRLH transmission lines and
Chebyshev filters to design better CRLH transmission line
sections with the help of classical filter theory.

Typically, CRLH transmission lines are considered as
tools for dispersion engineering—this is in some way
equivalent to frequency dependent phase control. Amplitude
plays a minor role, although the practical implementation of
a finite length section of a CRLH transmission line (and only
this is feasible in reality) leads to problems with impedance
match. On the other hand, filters are normally considered
as components which control the amplitude performance
of a signal while maintaining a good impedance match.
Looking at many system applications, however, group delay
(and therefore phase behavior as a function of frequency)
plays an important role as well—there are even special
filter design procedures strongly concentrating on group
delay/phase behavior (e.g., Bessel or linear phase filters).
This indicates closer relations between the two concepts than
usually perceived.

In this paper, we deepen and extend the discussion in
[13] and compare the design of CRLH transmission lines
with the design of high-order Chebyshev filters in more
detail. It is proven that a finite length CRLH transmission
line can be considered as the central part of a Chebyshev
filter. Thus, if we design a CRLH transmission line based
on the classical filter theory, a better performance of a finite
length transmission line section can be achieved. To this end,
we firstly summarize the characteristic formulas of a CRLH
transmission line. Secondly, we recall the design formulas for

a Chebyshev band-pass filter with a similar characteristic and
prove that the central section of the Chebyshev band-pass
filter is identical to a finite section of a CRLH transmission
line. By attaching the ending sections of the filter, a finite
length CRLH transmission line with better performance is
achieved. A similar result can be obtained for dual-CRLH
transmission lines. Thirdly, we compare the group delay
and phase distribution between a CRLH transmission line
and a Chebyshev filter. Backward wave propagation inside a
Chebyshev filter is indicated. Finally, we present an example
on how to improve the design of CRLH transmissions lines
in a simple way.

2. CRLH Transmission Line in
the Balanced Case

The equivalent circuit of a CRLH transmission line is a
cascaded network as shown in Figure 1(a) which consists of
series LC resonators alternating with shunt LC resonators. It
is a periodic structure, and the LC components are

Lj = LR, Cj = CR, for series branch resonators,

Lk = LL, Ck = CL, for shunt branch resonators,
(1)

where the subscripts L and R denote the “left-handed”
and the “right-handed” cases, respectively. The resonant
frequencies of the left-/right-handed LC circuits are ωL =
1/
√
LLCL and ωR = 1/

√
LRCR. The resonant frequencies of

the series-branch resonators and shunt-branch resonators
are ωse = 1/

√
LRCL and ωsh = 1/

√
LLCR. We define one

series LC resonator LjCj together with one adjacent shunt LC
resonator LkCk as a unit cell to analyze the periodic structure.
The characteristic impedance ZC of the CRLH transmission
line obtained from the image impedance analysis [14] is

ZC =
√

ZLZR
εse

εsh

(
1− εseεsh

4
ωL
ωR

)
, (2)

where εse = ω/ωse − ωse/ω, εsh = ω/ωsh − ωsh/ω, ZL =√
LL/CL, and ZR =

√
LR/CR. If εSe = εSh holds (equivalent

to ωse = ωsh), the band gap between the left-/right-
handed regions vanishes. This case is often referred to the
balanced case of CRLH transmission lines. A comparison
of the characteristic impedance of a CRLH transmission
line between the balanced and unbalanced case is shown
in Figure 2. Even in the balanced case, a perfect impedance
match can be only achieved at the transition frequency ω0.

The balanced condition of a CRLH transmission line is

ωSe = ωSh = ω0 or LLCR = LRCL, (3)

whereω0 is the transition angular frequency between the left-
/right-handed regions. The same results can be found in [5,
6].

In the balanced case, the characteristic impedance of the
CRLH transmission line is

ZC = Z0

√

1− ε2

4
ωL
ωR

, (4)
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Figure 2: Characteristic impedance of a CRLH transmission line in
the balanced/unbalanced case.

where ε = ω/ω0 − ω0/ω and Z0 = ZL = ZR. Assuming an
infinitely long CRLH transmission line in the balanced case,
the passband of the CRLH transmission line is corresponding
to ZC > 0. Thus, the lower and upper cut-off frequencies
are determined by the condition ZC = 0. We obtain the
corresponding equation on ω from (4) as

1
4

(
ω

ω0
− ω0

ω

)2 ωL
ωR

= 1. (5)

Then, we obtain the lower and higher cut-off frequencies by
solving (5) as

ωcL = ωR

(√

1 +
ωL
ωR
− 1

)

,

ωcR = ωR

(√

1 +
ωL
ωR

+ 1

)

.

(6)

From (3) and (5), the relation between the transition
frequency and cut-off frequencies is

ω2
0 = ωcLωcR = ωshωse = 1

√
LLLRCLCR

. (7)

There are four independent parameters, namely, LL, CL,
LR, and CR, in a CRLH transmission line design. With
the balanced condition, only three independent parameters
can be chosen freely. Once two cut-off frequencies and the
characteristic impedance ZC (matching to Z0) are fixed, a
unique CRLH transmission line configuration is determined
by (5) and (6) by subtracting the two equations in (5) and
introducing Z0 and ω0:

ω0LR = 1
ω0CL

= ω0

ωcR − ωcL
2Z0,

ω0CR = 1
ω0LL

= ω0

ωcR − ωcL
2
Z0
.

(8)

3. Chebyshev Band-Pass Filter

An Nth-order band-pass filter in principle has the same
LC equivalent circuit as the CRLH transmission line in
Figure 1(a). The band-pass filter design is usually achieved
from the lowpass to band-pass transformation, in which a
prototype lowpass filter is applied. The mapping formulas
can be found in [14] with

ω0Lj= 1
ω0Cj

= ω0

ω2 − ω1
gjZ0, for series branch resonators,

ω0Ck= 1
ω0Lk

= ω0

ω2 − ω1

gk
Z0

, for shunt branch resonators,

(9)

where gi is the ith element value of the prototype lowpass
filter, ω1 and ω2 are the lower and upper cut-off frequencies,
respectively, and ω0 = √

ω1ω2 is the center frequency. Z0 is
the system impedance. Once gi, ω1, ω2, and Z0 are fixed, a
band-pass filter is uniquely determined by (8).

From (8) we can obtain

LjCj = LkCk = 1
ω2

0
, (10)

which is equivalent to (3). In a band-pass filter design, the
balanced case of a CRLH transmission line always holds.

Since the mapping from a prototype lowpass to a band-
pass filter is a generic formula, it can be applied to any
type of prototype lowpass filter. Thus, the balanced case of
a CRLH transmission line is automatically realized in band-
pass filters from any kind of prototype lowpass filters with
series-LC and shunt-LC resonators. Butterworth, Gaussian,
or Chebyshev (with any passband ripples) band-pass filters
constructed from (8) satisfy the balanced condition of a
CRLH transmission line.

In most prototype lowpass filters, the element values gi
usually vary in a certain range and lead to a nonperiodic
structure. The central section of a high-order Chebyshev
filter, however, has a periodic structure. Figure 3 shows
an example of a 41st-order Chebyshev prototype lowpass
filter with several values of passband ripple. For elements
not close to either end, element values are practically
periodic. It should be noticed that always two adjacent filter
elements form one equivalent transmission line cell. Thus,
the central part of a Chebyshev is a quasiperiodic structure,
independently of the passband ripple.

3.1. Low Passband Ripple. The element values of a 41st-order
Chebyshev prototype lowpass filters with several different
values of passband ripple are shown in Figure 3. The lower
the passband ripple is, the lower is the variation of the
element values. In the limiting case, the values of the central
elements are close to gi = 2. When the passband ripple in a
Chebyshev lowpass filter is low and its order is high, it can
be proven theoretically or shown numerically that the filter
element values approach gi = 2 for all elements that are not
close to either filter end.
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Figure 3: Element values of 41st-order prototype Chebyshev
lowpass filters with different passband ripples.

When the element value is gj = gk = 2, (7) and
(8) become equivalent to each other. Thus, if a Chebyshev
band-pass filter and a CRLH transmission line have the
same cut-off frequencies (i.e., ω1 = ωcL, ω2 = ωcR) and
system impedance Z0, the same LC equivalent circuit is
determined by either (7) or (8). Onceω1,ω2, and Z0 are fixed,
the corresponding CRLH transmission line in the balanced
case and the central part of the corresponding high-order
Chebyshev band-pass filter with low passband ripple have
identical LC configurations.

3.2. High Passband Ripple. In a high-order Chebyshev pro-
totype lowpass filter with larger passband ripple, element
values oscillate around g = 2 as shown in Figure 3. For
those central elements, element values of series-branch LC
resonators and shunt-branch LC resonators keep constant
with gse and gsh, alternatively, and gse · gsh ≈ 4 always holds.
Thus, a high-ripple high-order Chebyshev band-pass filter
has a periodic configuration as well. It is a modified balanced
CRLH transmission line which will be discussed in Section 4.

Once two cut-off frequencies and the system impedance
are given, a uniform CRLH transmission line in the balanced
case and a high-order Chebyshev band-pass filter with low
passband ripple can be uniquely implemented with LC
circuits, respectively. In other words, a finite length uniform
CRLH transmission line in the balanced case is equivalent
to the central part of a high-order low-ripple Chebyshev
band-pass filter with the same cut-off frequencies and system
impedance.

4. Impedance Match and Passband Ripple

We first consider a CRLH transmission line in the bal-
anced case. The characteristic impedance is dependent on
frequency as in (4), and the calculated results are shown

in Figure 2. A match between the CRLH transmission line
and the system impedance Z0 can be obtained only around
the transition frequency ω0. This indicates that impedance
matching circuits should be applied in broadband designs
and applications.

When the passband ripple of a Chebyshev prototype
lowpass filter is high, the element values of the central
part are alternatively gse = 2α2 and gsh = 2/α2 for series
and shunt branches, where α is a coefficient dependent on
the passband ripple. If Z0 in (7) is replaced by αZ0, it is
still a well-designed CRLH transmission line. Therefore, the
passband ripple of a Chebyshev band-pass filter corresponds
to an impedance mismatch between the applied and designed
system impedance of the CRLH transmission line. The
greater the difference is, the higher is the passband ripple.
Based on the analysis of element values of a high-order
Chebyshev prototype lowpass filter, the relation between the
passband ripple and the impedance mismatch is

α =
(
gse

gsh

)s/2

= coths
(

1
2

sinh−1
(

10LAr /10 − 1
)−1/2

)
, (11)

where LAr is the passband ripple in dB, and the sign function
is

s =

⎧
⎪⎨

⎪⎩

+1, Z
Designed
0 > Z

Applied
0

−1, Z
Designed
0 < Z

Applied
0 .

(12)

Once α is given, the passband ripple can be obtained from
(10). For example, if the external system impedance is 50Ω
and the characteristic impedance of a CRLH transmission
line is 70Ω, the corresponding passband ripple of the band-
pass filter is LAr = 0.4827 dB ≈ 0.5 dB.

Therefore, the central part of a high-ripple high-order
Chebyshev band-pass filter is equivalent to a CRLH trans-
mission line with mismatched impedance to the source and
load.

When the external and the design impedances of a
CRLH transmission line are different, matching circuits have
to be applied. Even if both impedances are equal, some
matching may be required to improve the overall passband
performance. Since a CRLH transmission line is equivalent
to the central part of a Chebyshev band-pass filter, the
impedance matching circuits can be constructed from the
corresponding band-pass filter design. This procedure is
equivalent to the design of an entire filter and automatically
results in good matching performance.

As an example, we have designed a CRLH transmission
line of finite length in the balanced case, for example, with
21 series resonators and 20 shunt resonators according to
the circuit model in Figure 1(a). The CRLH transmission
line is composed of symmetrical unit elements [5], and
the simulated voltage reflection coefficients are shown in
Figure 4(a). At the center frequency, the impedance match
is almost perfect. This is the simplest method; nevertheless
large ripples exist near the cut-off frequencies, which con-
siderably affect the passband of the CRLH transmission line.
On the other hand, if we design the CRLH transmission line
from a 41st-order Chebyshev filter with 0.01 dB passband
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ripple by the method in Section 3, the impedance match is
excellent over the whole passband as shown in Figure 4(b).
However, all 41 resonators have to be designed exactly using
the required element values.

The trade-off is a hybrid design, in which the periodic
structure of the CRLH transmission line is applied, but
several resonators near either end are exchanged with those
from the corresponding band-pass filter, for example, a 41st-
order Chebyshev band-pass filter with 0.01 dB passband
ripple. The detailed procedure for our example is as fol-
lows: (a) design a 41st-order Chebyshev filter with 0.01 dB
passband ripple and a CRLH transmission line with 41
periodic unit cells with the same cut-off frequencies and
characteristic impedance, respectively; (b) choose the first
and last three LC resonators from the Chebyshev filter,
and place them into the CRLH transmission line at the
corresponding positions. The simulated results of the hybrid
design with three resonators exchanged at either end are
shown in Figure 4(c). A better impedance match compared
to Figure 4(a) has been achieved. With the modification of
more resonators, better results can be obtained.

If the dual-CRLH transmission line is taken into con-
sideration, a similar procedure can be applied. The pass-
band ripple of a high-order Chebyshev band-stop filter
corresponds to the mismatch between the characteristic
impedance of a dual-CRLH transmission line and the system
impedance.

In the case that even order Chebyshev filters are con-
cerned, the load impedance, which is only dependent on the
passband ripple and independent on the filter order, is always
different from the source impedance. However, when the
passband ripple is small, the load impedance is close to the
source impedance. Therefore, there is not much difference
between filter element values of even and odd order for
low passband ripple and high order of the filter. On the
other hand, when the passband ripple is high, the difference
between even order and odd filters appears only in a limited
number of elements near the load; these can be understood
as an impedance matching circuit. Thus, with respect to even
order Chebyshev filters, the analysis in this paper is also
suitable.

Another point that we would like to stress here is the
design flexibility of a CRLH transmission line. Between
CRLH transmission lines and Chebyshev band-pass filters,
there are three common parameters, that is, two cut-off
frequencies and the matching impedance. Besides these
parameters, there is one more parameter in the design of
band-pass filters, that is, the passband ripple. It reflects the
impedance mismatch between CRLH transmission lines and
source/load. Once some passband ripple variation is allowed
in a limited range, it gives more flexibility in the design of a
CRLH transmission line.

5. Group Delay and Negative Phase Velocity

Left-handed transmission lines support electromagnetic
waves with phase and group velocities that are antiparallel to
each other. The apparent backward wave propagation is one
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Figure 4: Comparison of 10 dB bandwidths between CRLH
transmission lines. (a) Conventional CRLH transmission line with
20 symmetric unit elements; (b) CRLH transmission line from 41st-
order Chebyshev band-pass filter with 0.01 dB passband ripple; (c)
CRLH transmission line with three resonators exchanged at either
end.
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Figure 5: Group delay of a finite length CRLH transmission line
with 20 symmetric unit elements, the correspondent 41st-order
Chebyshev band-pass filter, and the modified CRLH transmission
line with three resonators from the Chebyshev band-pass filter at
either end.

key characteristic of CRLH transmission lines. We will show
that this does exist with Chebyshev band-pass filters in part
of the frequency band due to a similar phase performance
compared to CRLH transmission lines.

Group delay, which is an important parameter of a filter,
is defined as

tg = −
dϕ(ω)
dω

. (13)
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Figure 6: Phase shifts along a 41st-order Chebyshev band-pass filter
from the lower cut-off frequency ω1 to the higher cut-off frequency
ω2. The left-handed (LH) region is between ω1 and ω0, and the
right-handed (RH) region is between ω0 and ω2.

Flat and consistent group delay over frequency is of impor-
tance in many microwave systems. A comparison of group
delay between a conventional finite length CRLH transmis-
sion line, the corresponding Chebyshev band-pass filter, and
the modified CRLH transmission line is shown in Figure 5.
They all have a similar performance over frequency. There
are no ripples in the case of the band-pass filter (Figure 5(b)),
while ripples obviously exist around the cut-off frequencies
ω1 and ω2 in Figure 5(a). The performance of the new
designed CRLH transmission line, as shown in Figure 5(c),
lies between the conventional CRLH transmission line and
the Chebyshev filter. As can be seen, Chebyshev filters have
a better group delay performance compared to conventional,
finite length CRLH transmission lines.

When a band-pass filter is built from lumped/
quasilumped elements, the dimensions of each element
are much smaller than the wavelength in the passband of
the filter. The phase shift along the filter can be calculated
based on its equivalent LC circuit. With the example of
a 41st-order Chebyshev band-pass filter with 0.01 dB
passband ripple, there are twenty nodes (the connection
nodes between series-branch and shunt-branch resonators)
in the filter. The phase shifts along those nodes at different
frequencies are shown in Figure 6. Similar results are
obtained for a conventional CRLH transmission line. At the
center frequency ω0, all nodes exhibit the same phase, which
is known as the zeroth-order resonance in a conventional
CRLH transmission line. In the right-handed region, phase
angles decrease along the nodes according to a forward wave
propagation. In the left-handed region, phase angles increase
along the nodes, approximating a negative phase velocity.

This phase analysis shows the equivalence between a
finite length transmission line and a Chebyshev filter also
with respect to approaching a negative phase velocity,
where the filter has a superior amplitude and group delay
performance compared to conventional finite length CRLH
transmission lines.
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6. Conclusions

The characteristics of finite length CRLH transmission lines
and high-order Chebyshev band-pass filters are analyzed,
and synthesis formulas based on the matching impedance
and cut-off frequencies are shown. From the analysis of
element values in Chebyshev prototype lowpass filter, close
relations between a CRLH transmission line and a Chebyshev
band-pass filter are revealed. It is proven that a CRLH trans-
mission line—in the balanced case—can be considered as the
central part of a high-order low passband ripple Chebyshev
band-pass filter with identical matching impedance and cut-
off frequencies.

The meaning of the passband ripple in a Chebyshev
band-pass, which has no obvious counterpart in a CRLH
transmission line, corresponds to an impedance mismatch
between the CRLH transmission line and the source/load.
The formula to compute the passband ripple from the
impedance mismatch is presented as well. In addition,
impedance matching circuits in finite length CRLH trans-
mission line applications can be design based on the classical
filter theory, achieving much better performance.

Phase analysis, including group delay and phase distri-
bution, shows that Chebyshev filters have similar and partly
even better phase responses compared to conventional finite
length CRLH transmission lines. Negative phase velocity is
supported by Chebyshev filters in the same way as with
CRHL transmission lines. This confirms the relation between
Chebyshev filters and CRLH transmission lines.

Similar results can be obtained for dual-CRLH trans-
mission lines (another kind of negative refractive index
transmission lines) and Chebyshev band-stop filters.

Summarizing, this means that a finite length CRLH/dual-
CRLH transmission line can be designed from a Chebyshev
band-pass/band-stop filter. By allowing a reasonable pass-
band ripple, there is even more design freedom. Based on
impedance matching, the design from classical filter theory
can achieve smooth broadband responses.

First examples for such an approach have already been
presented in [8, 9] where sections of a CRLH transmission
line have been realized as band-pass filters to design antennas
with backfire-to-endfire scanning.

Finally, we would like to state that we do not at all
want to replace the CRLH transmission line concept by filter
theory. The CRLH transmission line concept is very useful
to get new insight and to arrive at new design concepts,
mainly by phase/dispersion engineering which is generally
not at all evident from filter theory, but filter theory may
help to improve its performance in the case of finite CRHL
transmission line length.

Appendix

Element Values of a High-Order Prototype
Chebyshev Lowpass Filter

An Nth-order prototype Chebyshev lowpass filter with a
passband ripple of LAr dB, a cut-off frequency at ω′0 = 1 and

a normalized impedance g0 = 1, has the initial coefficients
[14]:

β = 2 sinh−1
(

10LAr /10 − 1
)−1/2

,

γ = sinh

(
β

2N

)

,
(A.1)

and the corresponding coefficients:

ak = sin
[(
k − 1

2

)
π

N

]
,

bk = γ2 + sin2
(
k
π

N

)
.

(A.2)

The element values are g1 = 2(a1/γ) and gk =
4ak−1ak/bk−1gk−1, where k = 2, 3, . . . ,N . Assuming that the
filter order is high, that is, N � max[1,β], γ approaches
β/2N .

In the beginning part of the prototype lowpass filter (k�
N), the corresponding coefficients are

ak � (2k − 1)π
2N

,

bk �
(
β

2N

)2

+
(
kπ

N

)2

.

(A.3)

Then the element values of the prototype lowpass filter are

g2k+1 = j
(4k + 1)π

β′

∏k
m=1

(
1−

(
β′2/(2m− 1)2π2

))

∏k
m=1

(
1−

(
β′2/(2m)2π2

))

×
k∏

m=1

(
(2m− 1)2

(2m)2

)

,

g2k+2 = j
(4k + 3)β′

(k − 1)2π

∏k
m=1

(
1−

(
β′2/(2m)2π2

))

∏k+1
m=1

(
1−

(
β′2/(2m− 1)2π2

))

×
k∏

m=1

(
(2m)2

(2m− 1)2

)

,

(A.4)

where β′ = j(β/2) and k = 1, 2, 3, . . . (k� N).
The element values can be approximated by the infinite

products of the sine and cosine functions and the Wallis’
series. Then the element values are

g2k+1 ≈ j
2(4k + 1)

2k + 1
cos2

(
β′/2

)

sinβ′
≈ j

4cos2
(
β′/2

)

sinβ′
,

g2k+2 ≈ − j 2k(4k + 3)

2(2k + 1)2

sinβ′

cos2
(
β′/2

) ≈ − j sinβ′

cos2
(
β′/2

) .

(A.5)

Substituting β′ by j(β/2), the element values can be rewritten
as

godd = g2k+1 ≈ 2 coth
β

4
= 2α,

geven = g2k+2 ≈ 2 tanh
β

4
= 2
α

,

(A.6)
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where α = coth(β/4). β is dependent on the passband ripple
LAr dB as in (13). When LAr is small, we have β� 1.

Therefore, for a high-order low-ripple (N � β � 1)
prototype Chebyshev lowpass filters, we have

godd � geven � 2. (A.7)

The element values approach 2 after the beginning parts of
the filter.

On the other hand, when the passband ripple is high, that
is, β ≈ 1 or β < 1, (A.6) shows that the element value of gi will
switch between godd > 2 and geven < 2. The adjacent element
values satisfy godd · geven � 4.

For a high-order Chebyshev prototype lowpass filter, that
is, N � max[1,β], a general relation between two adjacent
element values is obtained from (A.3):

g2k+1 = 4
g2k

· a2ka2k+1

b2k

≈ 4
g2k

· sin((4k + 1)π/2N) sin((4k + 3)π/2N)

sin2(2k(π/N))
.

(A.8)

When the element is not close to either end of the filter, that
is, k� 1 and N − k� 1, we have g2k · g2k+1 � 4.

Thus the sequence of element values keeps gi � 2 of a
high-order (N � max[1,β]) Chebyshev prototype lowpass
filter with low passband ripple (LAr � 1), when those
elements are not close to either end of the filter. Otherwise,
when the passband ripple of the filter is high, those element
values will keep switching between godd > 2 and geven < 2.

For example, we show (Figure 3) some calculated results
of the element values of Chebyshev lowpass filters. When
N > 20, 4 < k < N − 4, and LAr = 0.01 dB, the maximum
relative error of the element values to g = 2 is less than 8%. If
the filter order goes higher and the passband ripple becomes
lower, for example, N > 30 and LAr = 0.001 dB, those errors
are less than 6%. Moreover, those errors for elements around
the central part of the filter keep always below 3%.
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